Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei-Ming Xu, ${ }^{\text {a }}$ Xiu-Rong $\mathrm{Hu},{ }^{\text {a* }}$ Jian-Ming Gu ${ }^{\text {a }}$ and Xian Huang ${ }^{b}$
${ }^{\text {a }}$ Central Laboratory, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.113$
Data-to-parameter ratio $=6.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-\{2-[3-(4-Methoxyphenyl)-4,5-dihydro-isoxazol-5-yl]vinyl\}-3-p-tolylisoxazole

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$, displays a trans configuration with respect to the olefinic link. The isoxazole and benzene rings are slightly twisted towards each other.

Received 27 February 2004
Accepted 18 March 2004
Online 31 March 2004

Comment

Isoxazole and isoxazoline moieties represent two classes of unique pharmacophores that are observed in many therapeutic agents and are versatile intermediates for the synthesis of complex natural products. Therefore, they are interesting targets in the development of new drug leads. In the title compound, (I), the fact that the $\mathrm{C} 19-\mathrm{O} 3-\mathrm{C} 22$ angle is $116.9(2)^{\circ}$ shows the influence of the benzene ring on the ether group. The widening of the $\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9$ [to 130.1 (3) ${ }^{\circ}$] and C $9-\mathrm{C} 10-\mathrm{C} 11$ [to $133.9(3)^{\circ}$] angles, and the decrease in the $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ and $\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$ angles $[101.6$ (2) and $104.0(2)^{\circ}$, respectively], may be due to steric effects. The olefinic bond of the title compound exhibits a trans configuration. The dihedral angles between the isoxazoline plane and the two benzene planes are 75.14 (4) and 171.55 (2) ${ }^{\circ}$, and the dihedral between the two benzene rings is $97.85(3)^{\circ}$.

(I)

Experimental

Phenylpropargyl selenide (2 mmol) was mixed with hydroximoyl halide (2 mmol); to the mixture was added $\mathrm{Et}_{3} \mathrm{~N}$, dropwise for 6 h , yielding 3-(4-methylphenyl)-5-phenylselenomethylisoxazole, which react with lithium diisopropylamide and allyl bromide, followed by another 1,3-dipolar cycloaddition (Kurth \& Kantorowski, 1997) to obtain isoxazolyl and isoxazolinyl substitued selenide. (E)-Isoxazolyland isoxazolinyl-substituted [viz. (I)] olefins were obtained through selenoxide syn elimination of selenide (Clive, 1978). The solid was filtered off and single crystals suitable for X-ray analysis were obtained by recrystallization from chloroform.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \\
& M_{r}=360.41 \\
& \text { Orthorhombic, }{ }^{2}+c a 2_{1} \\
& a=9.9819(2) \AA \\
& b=22.3639(4) \AA \\
& c=8.450(1) \AA \\
& V=1878.52(6) \AA^{3} \\
& Z=4 \\
& D_{x}=1.274 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 18400 reflections
$\theta=2.2-27.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Platelet, yellow
$0.45 \times 0.34 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	$R_{\text {int }}=0.032$
\quad diffractometer	$\theta_{\max }=27.5^{\circ}$
ω scans	$h=-12 \rightarrow 12$
15501 measured reflections	$k=-29 \rightarrow 29$
2283 independent reflections	$l=-9 \rightarrow 10$
1257 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
1637 reflections
244 parameters

H -atom parameters constrained $w=1 /\left[0.001 F_{o}{ }^{2}+0.76 \sigma^{2}\left(F_{o}\right)\right] /\left(4 F_{o}{ }^{2}\right)$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-N1	$1.412(3)$	C6-C7	$1.386(5)$
O1-C10	$1.346(3)$	C8-C9	$1.403(4)$
O2-N2	$1.416(3)$	C9-C10	$1.345(4)$
O2-C13	$1.453(3)$	C10-C11	$1.450(4)$
O3-C19	$1.366(3)$	C11-C12	$1.321(4)$
O3-C22	$1.433(4)$	C12-C13	$1.478(4)$
N1-C8	$1.315(4)$	C13-C14	$1.530(4)$
N2-C15	$1.275(3)$	C14-C15	$1.493(4)$
C1-C2	$1.514(4)$	C15-C16	$1.463(4)$
C2-C3	$1.379(5)$	C16-C17	$1.400(4)$
C2-C7	$1.365(5)$	C16-C21	$1.388(4)$
C3-C4	$1.382(4)$	C17-C18	$1.372(4)$
C4-C5	$1.379(4)$	C18-C19	$1.384(4)$
C5-C6	$1.392(4)$	C19-C20	$1.370(4)$
C5-C8	$1.472(4)$	C20-C21	$1.384(4)$
C19-O3-C22	$116.9(2)$	C9-C10-C11	$133.9(3)$
C3-C2-C7	$117.2(3)$	O2-C13-C14	$104.0(2)$
C4-C5-C6	$117.6(3)$	C13-C14-C15	$101.6(2)$
C5-C8-C9	$130.1(3)$	C17-C16-C21	$117.5(3)$

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=1.00 \AA$, and included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
Molecular structure of the title compound, with 30% probability displacement ellipsoids.

Data collection: PROCESS-AUTO (Rigaku/MSC \& Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Clive, D. L. J.(1978). Tetrahedron, 34, 1049-1095.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Kurth, M. J. \& Kantorowski, E. J. (1997). J. Org. Chem. 62, 6797-6803.
Rigaku/MSC \& Rigaku Corporation (1998). PROCESS-AUTO. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC \& Rigaku Corporation (2001).CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Watkin, D. J., Prout, C. K. Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.

